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Abstract 
 

The average distance in a graph is one of the important index which can be 

used in many applications. Eccentricity is the maximum distance from a vertex to 

any other vertex of the graph. The average eccentricity of a graph is applicable in 

network theory etc. In this article, we study average eccentricity of graph using 

Detour D-distance. We derive some properties and compute it for some classes of 

graphs.   
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1. Introduction 

In this paper we discuss a topological index, namely, average eccentricity of vertices 

w.r.t. detour D-distance. The concept of D-distance in graphs was introduced by Reddy Babu and 

Varma in [4]. The concept of detour D-distance in graphs was introduced by V. Venkateswara 

Rao and Varma in [5]. Gupta. S, et. al. [1] and Ghorbanifar M, [2] explained connective 

eccentric index.  The authors introduced D-eccentric and detour D-eccentric connectivity index 

(see [6, 7]). 

In this article, we calculate the average eccentricities of vertices using detour D-distance 

in some families of the graphs. 

Throughout this paper, all the graphs we consider are assumed to be finite, simple and 

connected. For any unexplained notation, see [3].  We recall some definitions based on detour D-

distance, see [5]. 
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The detour D -distance,  ,DD u v , between two vertices ,u v  of a connected graph G  is 

defined as     , max ,D DD u v l u v  if u  and v  are distinct and  , 0DD u v    if u v , where 

the maximum is taken over all u v   paths s  in G  .   

In a natural way, the detour D-eccentricity  D

De v of v is the detour D-distance to a 

farthest vertex from .v  The detour D-radius ,  D

Dr G and detour D-diameter,    ,D

Ddaim G
 
are 

defined as the minimum and maximum eccentricities, respectively. The detour D-center, 

  ,D

DC G  and detour D-periphery,   ,D

DP G of graph G consists of the set of vertices of minimum 

and maximum eccentricity, respectively. A graph G is detour D-self centered if    .D

DV G C G   

The average detour D-distance between vertices is given by

 
 

 
 ,

1
,

1

D D

D

u v

G D u v
n n

 


 . The detour D-distance matrix of ,G  denoted by   ,D

DM G is 

defined as   ,

D

D i j n n
M G a


     where  , ,D

i j i ja D u u  is the detour D-distance between the 

vertices and . For any subset S of  V G , we define detour D-distance between a vertex u 

and  S as     , max , /D DD u S D u v v S  .  Further, we have    ,D D

D

v V

S D v S


 . 

                        2. Results on average detour D-eccentricity 

In a graph G , the average detour D-eccentricity  of G is defined as  
1

( )
i

D D

D D i

v V

avec G e v
G 

  . 

            We begin with a result on detour D-self-centered graphs which is obvious. 

Theorem 2.1 For any graph, G,    .D D D

DD radius avec G D diameter     

Proof: From the definition, minimum eccentricity is detour D-radius and maximum eccentricity 

is detour D-diameter. Hence   .D D D

DD radius avec G D diameter   
 

Theorem 2.2 For detour D-self centered graph, G,    .D D D

DD radius avec G D diameter     

Proof: From the definition of detour D-self centered graph, detour D-radius and detour D-

diameter are same. Hence   .D D D

DD radius avec G D diameter     

 

 

iu ju
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Theorem 2.3 For any graph, ,G    .D D

D Davec G G  

Proof: LetG be a graph with n  vertices. Then the detour D-distance matrix will have n  rows. 

The average detour D-distance of each row is less than or equal to detour D-eccentricity of the 

row, i.e.,  ,

1

1

1

n
D

i j i

j

a e v
n 



 for each i.  Here, 

,i ja  stands for the detour D-distance between the 

vertices iv and jv . Then taking the sum over all i, we get  ,

1 1 1

1

1

n n n
D

i j D i

i j i

a e v
n   



  .Then

 
 ,

1 1 1

1 1

1

n n n
D

i j D i

i j i

a e v
n n n  



  . Hence    .D D

D DG avec G   

Theorem 2.4 Let G be a graph with n vertices. Then       
1

.D D D D

D D D Davec G r G C G
n
  
 

 

Proof:  Let 1 2, , , nu u u be the vertices of G . Some of the i ju u detour paths will pass through 

the detour D-center and some may not. 

Let P be a i ju u  path in G passing through a detour D-central vertex ku such that 

 ,D

i kD u u is equal to detour D-radius, i.e.,    , .D D

i k DD u u r G  Also  D

DC G is the set which 

contains all the central vertices. Clearly from the definition, detour D-distance from a vertex to 

 D

DC G is always greater than detour D-distance from that vertex to the vertex ,ju  i.e., 

    , , .D D D

D j i jD C G u D u u  Using triangle inequality we have    , ,D D

i j i kD u u D u u 

      , , .D D D D

k j D D jD u u r G D C G u   

Suppose * * *

1 2, , , nu u u denote the detour D-eccentricity vertices of 1 2, , , nu u u resply. Then 

      *, .D D D D

D i D D ie u r G D C G u   Further,        1 2

1D D D D

D D D D navec G e u e u e u
n
       

                        * * *

1 2

1
, , ,D D D D D D D D D

D D D D D D nr G D C G u r G D C G u r G D C G u
n
       
 

 

                *

1

1
,

n
D D D

D D i

i

n r G D C G u
n 

 
  

 
     *

1

1
,

n
D D D

D D i

i

r G D C G u
n 

   . 

             Hence       
1

.D D D D

D D D Davec G r G C G
n
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Theorem 2.5 Let H be a spanning subgraph of a graph G we have    .D D

D Davec G avec H  

Proof:  If H be the spanning subgraph of the graph G then H G  with same number of vertices 

and    .E H E G Clearly, as the number of edges may reduce in H, we have

   deg degG Hv v . Hence    .D D

D Davec G avec H
 

 

3. Average detour D-eccentricity of some families of graphs 

Next, in this section, we calculate the average detour D-eccentricity of some classes of 

graphs.  For these computations, we use the detour D-eccentricities of vertices of some graphs, 

which can be found in [5].  

Theorem 3.1 The average detour D-eccentricity of the complete graph, ,nK
 
is 2 1.n   

Proof: In a complete graph ,nK each vertex is of degree 1n . Thus eccentricity of each vertex is 

2 1.n   Hence the average detour D-eccentricity       
1

1 1

i

n
D D D

D n D i D i

v V in

avec K e v e v
K n 

     

=      21
1D D

D i D ine v e v n
n

   . 

Theorem 3.2 For the cycle graph ,nC  the average detour D-eccentricity is 3 1.n  

Proof: In the cycle graph nC with n vertices, we have detour D-eccentricity of is 3 1n . Then the 

average detour D-eccentricity is      
1

1 1

i

n
D D D

D n D i D i

v V in

avec C e v e v
C n 

   =   
1 D

ine v
n


 

 .D

D ie v Thus  ( ) 3 1.D

navec C n   

Theorem 3.3 The average detour D-eccentricity of the wheel graph 1,nW  with 1n vertices is5 .n  

Proof: In the wheel graph 1,nW with 1n vertices let 0v be the vertex which is adjacent to all other 

vertices. Then  0deg v n and detour D-eccentricity is 5 .n  All the remaining n vertices have 

degree 3 and   D-eccentricity is 5 .n  Thus the average detour D-eccentricity of the wheel graph 

1,nW   is      1,

11,

1 1
5

1
i

n
D D D

D n D i D i

v V in

avec W e v e v n
nW  

 
     

 
1

1
5 5

1

n

i

n n
n 

 
    

 5 .n  
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Theorem 3.4 Let  ,m nK m n be the complete bipartite graph with m n  vertices. Then the 

average detour D-eccentricity is
     

2 2 3 2 1
.

m m n m n n m

m n

    


 

Proof: In the complete bipartite graph  ,m nK m n  with m n vertices, the vertex set V can be 

partitioned as 1 2V V with 1V contains m  vertices and 2V contains n vertices. The detour D-

eccentricity of all vertices in 1V  is 2 3m mn m  and detour D-eccentricity of all vertices in 2V  is 

2 2 1.m mn m    Then the average detour D-eccentricity is   ,

D

m navec K    
,

1

i

D

i

v Vm n

e v
K 



 
1

1 m n
D

i

i

e v
m n







     2 21

3 2 1m m mn m n m mn m
m n

       
 

 

=
 

     
2 2 3 2 1

.
m m n m n n m

m n

    


 

Theorem 3.5 For the complete bipartite graph, 
, ,m mK  with 2m vertices, the average detour D-

eccentricity is 22 2 1.m m   

Proof: In the complete bipartite graph ,m mK  with 2m vertices, the vertex set V can be partitioned 

as 1 2V V with 1V contains m  vertices and 2V contains m vertices. Then in ,m mK degree of each 

vertex is m and D-eccentricity of each vertex 22 2 1.m m   Thus the average detour D-

eccentricity is   

   
2

2 2

,

1,

1 1
(2 2 1) 2 2 1.

2
i

m
D D

D m m D i

v V im m

avec K e v m m m m
mK  

 
       

 
 

 

Theorem 3.6 For the Path graph, ,nP  the average detour D-eccentricity of is  21
3 8 16

2
n n

n
 

if n is even and  21
3 5 10

2
n n

n
  if n is odd. 

Proof: In the path graph nP with n vertices, the two end vertices have degree 1 and detour D-

eccentricity  3 1 .n  The remaining  2n vertices have degree 2 and detour D- eccentricity  
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3 1

2

n 
 if n  is odd and 

3 2

2

n 
if n  is even. We calculate average detour D-eccentricity by 

consider the even and odd cases separately.    

Case (i)   n  is odd 

The average detour D-eccentricity is 

   
1

i

D D

D n D i

v Vn

avec P e v
P 

 
2

1 3 1
3( 1) 3( 1)

2

n

i

n
n n

n 

 
     

 
  21

3 5 10
2

n n
n

   . 

Case (ii) n  is even  

The average detour D-eccentricity is 

   
1

i

D D

D n D i

v Vn

avec P e v
P 

 
2

1 3 2
3( 1) 3( 1)

2

n

i

n
n n

n 

 
     

 
  21

3 8 16
2

n n
n

   . 

 

Theorem 3.7 For the Star graph, 1, ,nSt  with 1n vertices the average detour D-eccentricity is 

2 5 2
.

1

n n

n

 


 

Proof: In the star graph 1, ,nSt  the degree of central vertex is n and detour D-eccentricity is 2.n  

All the remaining n vertices have degree 1 and detour D-eccentricity 4.n  Thus the average 

detour D-eccentricity is 

   1,

1,

1

i

D D

D n D i

v Vn

avec St e v
St 

   
1

1

1

1

n
D

D i

i

e v
n







     

21 5 2
2 4 .

1 1

n n
n n n

n n
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