Skolem Difference Mean Labeling of Some Path Related Graphs

Dharamvirsinh Parmar*1, Urvisha Vaghela ${ }^{2}$
${ }^{1}$ Assistant Professor at Department of Mathematics, C.U.Shah University, Wadhwan, India ${ }^{2}$ Research Scholar, C.U. Shah University, Wadhwan, India

Abstract

A graph $G=(V(G), E(G))$ with p vertices and q edges is called Skolem difference mean labeling graph if $f: V \rightarrow\{1,2,3, \ldots, p+q\}$ is an injective mapping such that induced bijective edge labeling $f^{*}: E \rightarrow\{1,2,3, \ldots, q\}$ defined by $f^{*}(e=u v)=\frac{|f(u)-f(v)|}{2}$, if $|f(u)-f(v)|$ is even otherwise $\frac{|f(u)-f(v)|+1}{2}$, if $|f(u)-f(v)|$ is odd.. In this paper we discuss Skolem difference mean labeling of Broom graph, Comb graph, Two star graph and $K_{1,3} * K_{1, n}$ graph.

Keywords: Skolem difference mean labeling, Broom graph, Comb graph, Two star graph, $K_{1,3}$ * $K_{1, n}$ graph.

1. Introduction

We consider finite, connected and undirected graph. We consider graph G having set of vertices $V(G)$ and set of edges $E(G)$. A graph labeling of a graph is a map that carries the graph elements to the set of numbers, subject to certain conditions. For detailed survey on graph labeling we refer to a dynamic survey on graph labeling by Gallian [2].

The concept of Skolem mean labeling was introduced by V. Balaji, D.S.T. Ramesh and A. Subramanian in [7]. Motivated by these definition Skolem difference mean labeling was introduced by K. Murugan and A. Subramanian in [4]. For the standard notation, we refer Gross and Yellen [3].

Definition 1.1 A graph $G=(V(G), E(G))$ with p vertices and q edges is called Skolem difference mean labeling graph if $f: V \rightarrow\{1,2,3, \ldots, p+q\}$ is an injective mapping such that induced bijective edge labeling $f^{*}: E \rightarrow\{1,2,3, \ldots, q\}$ defined by $f^{*}(e=u v)=\frac{|f(u)-f(v)|}{2}$, if $\mid f(u)-$ $f(v) \mid$ is even otherwise $\frac{|f(u)-f(v)|+1}{2}$, if $|f(u)-f(v)|$ is odd. A graph that admits Skolem difference mean labeling is called Skolem difference mean graph

Definition 1.2 A Broom graph is graph of n vertices and have a path P with d vertices and $n-d$ pendant vertices all of these being adjacent to either the origin u or the terminus v of path P. It is denoted by $B_{n, d}$.

Definition 1.3 The Comb is the graph obtained from a path P_{n} by attaching a pendant vertex to each vertex of the path. It is denoted by $P_{n} \odot K_{1}$.

Definition 1.4 The two star is the disjoint union of $K_{1, m} \& K_{1, n}$. It is denoted by $K_{1, m} \cup K_{1, n}$.
Definition $1.5 K_{1,3} * K_{1, n}$ is the graph obtained from $K_{1,3}$ by attaching root of a star $K_{1, n}$ at each pendant vertex of $K_{1,3}$.

2. Main Result

Theorem 2.1 The Broom graph $B_{n, d}$ is a Skolem difference mean graph for all values of $n \geq$ $4, d \geq 2$.

Proof: Let $G=B_{n, d}$ with $V(G)=\left\{u_{1}, u_{2}, \ldots \ldots, u_{d}, u_{d+1}, \ldots \ldots \ldots, u_{n}\right\}$ and
$E(G)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq d-1\right\} \cup\left\{\left(u_{d} u_{d+i}\right): 1 \leq i \leq \mathrm{n}-d\right\}$.
Hence $|V(G)|=n \&|E(G)|=n-1$.
Define a function $f: V(G) \rightarrow\{1,2,3, \ldots \ldots \ldots \ldots, 2 n-1\}$ as follows.
Case: 1 When d is even.

$$
\begin{array}{lc}
f\left(u_{2 i-1}\right)=d+2 i-1 & 1 \leq i \leq \frac{d}{2} \\
f\left(u_{2 i}\right)=d-2 i+1 & 1 \leq i \leq \frac{d}{2} \\
f\left(u_{i}\right)=2 i-1 & d+1 \leq i \leq n .
\end{array}
$$

Case:2 When d is odd.

$$
\begin{array}{lc}
f\left(u_{2 i-1}\right)=d-2 i+2 & 1 \leq i \leq \frac{d+1}{2} \\
f\left(u_{2 i}\right)=d+2 i & 1 \leq i \leq \frac{d-1}{2} \\
f\left(u_{i}\right)=2 i-1 & d+1 \leq i \leq n
\end{array}
$$

In both case we define following edge function

$$
\begin{array}{rl}
f^{*}: E(G) \rightarrow\{1,2,3 \ldots, n-1\} \text { by } f^{*}\left(u_{i} u_{i+1}\right)=i & 1 \leq i \leq d-1 \\
f^{*}\left(u_{d}, u_{i+1}\right)=i & d \leq i \leq n
\end{array}
$$

Which is bijective function. Hence Broom graph is a Skolem difference mean graph.

Example-2.2: A Skolem difference mean labeling of $B_{15,10}$ is shown in Figure 1.

Figure 1. Skolem difference mean labeling of $\boldsymbol{B}_{15,10}$
Theorem 2.3 The Comb $P_{n} \odot K_{1}$ graph is a Skolem difference mean graph for all $n \geq 2$.
Proof: Let $G=P_{n} \odot K_{1}$ with $V(G)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and
$E(G)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(u_{i} v_{i}\right): 1 \leq i \leq n\right\}$.
$\therefore|V(G)|=2 n \&|E(G)|=2 n-1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots \ldots \ldots \ldots \ldots, 4 n-1\}$ as follows.
Case- 1 If n is odd

$$
\begin{array}{ll}
f\left(u_{2 i-1}\right)=4 n-2 i & 1 \leq i \leq \frac{n+1}{2} \\
f\left(u_{2 i}\right)=2 i-1 & 1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{2 i-1}\right)=4 n+3-6 i & 1 \leq i \leq \frac{n+1}{2} \\
f\left(v_{2 i}\right)=6 i-2 & 1 \leq i \leq \frac{n-1}{2}
\end{array}
$$

Case -2 If n is even

$$
\begin{array}{ll}
f\left(u_{2 i-1}\right)=4 n-2 i & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{2 i}\right)=2 i-1 & 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i-1}\right)=4 n+3-6 i & 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i}\right)=6 i-2 & 1 \leq i \leq \frac{n}{2}
\end{array}
$$

In both case we define following edge function

$$
\begin{array}{cc}
f^{*}: E(G) \rightarrow\{1,2,3 \ldots, 2 n-1\} & \text { by } f^{*}\left(u_{i} u_{i+1}\right)=2 n-i \\
f^{*}\left(u_{i} v_{i}\right)=i & 1 \leq i \leq n-1 \\
& 1 \leq i \leq n
\end{array}
$$

Which is bijective function. Hence $\operatorname{Comb} P_{n} \odot K_{1}$ graph is a Skolem difference mean graph
Example-2.4: A Skolem difference mean labeling of $P_{8} \odot K_{1}$ is shown in Figure 2.

Figure 2. Skolem difference mean labeling of $\boldsymbol{P}_{\mathbf{8}} \odot \boldsymbol{K}_{\mathbf{1}}$

Theorem 2.5 The two star $K_{1, m} \cup K_{1, n}$ is a Skolem difference mean graph for all values of $m, n \geq$ 2 .

Proof: Let $G=K_{1, m} \cup K_{1, n}$
Case 1: $n=m$.
We have $V(G)=\{u, v\} \cup\left\{u_{i}, v_{i} / 1 \leq i \leq m\right\}$.
Hence $|V(G)|=2 m+2$ and $|E(G)|=2 m$.
The required vertex labeling $f: V(G) \rightarrow\{1,2,3 \ldots \ldots \ldots \ldots \ldots, 4 m+2\}$ is defined as follows:

$$
\begin{aligned}
& f(u)=1 \\
& f(v)=3 \\
& f\left(u_{i}\right)=2 i \quad, 1 \leq i \leq m \\
& f\left(v_{i}\right)=2 m+2 i+2, \quad 1 \leq i \leq m .
\end{aligned}
$$

We define following edge function

$$
\begin{array}{cl}
f^{*}: E(G) \rightarrow\{1,2,3, \ldots \ldots \ldots \ldots \ldots \ldots, 2 m\} \text { by } \\
f^{*}\left(u u_{i}\right)=i & 1 \leq i \leq m \\
f^{*}\left(v v_{i}\right)=m+i & 1 \leq i \leq m
\end{array}
$$

Thus induced edge labels are distinct from $1,2,3, \ldots \ldots \ldots \ldots, 2 m$.
Case 2: $n<m$ or $m<n$.
We have $V(G)=\{u, v\} \cup\left\{u_{i}, v_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

$$
\begin{aligned}
& |V(G)|=m+n+2 \\
& |E(G)|=m+n \text {. } \\
& f: V(G) \rightarrow\{1,2,3 \ldots \ldots \ldots \ldots \ldots, 2 m+2 n+2\} \text { is defined as follows: } \\
& f(u)=1 \\
& f(v)=3 \\
& f\left(u_{i}\right)=2 i \quad, 1 \leq i \leq m \\
& f\left(v_{j}\right)=2 m+2 j+2,1 \leq j \leq n .
\end{aligned}
$$

We define following edge function

$$
\begin{gathered}
f^{*}: E(G) \rightarrow\{1,2,3, \ldots \ldots \ldots \ldots \ldots \ldots, m+n\} \text { by } \\
f^{*}\left(u u_{i}\right)=i \quad 1 \leq i \leq m \\
f^{*}\left(v v_{j}\right)=m+j \quad 1 \leq j \leq n
\end{gathered}
$$

Thus the induced edge labels are distinct from $1,2,3, \ldots \ldots \ldots \ldots . . m+n$.
Hence, the Star graph is a Skolem difference mean graph.
Example-2.6: A Skolem difference mean labeling of $K_{1,7} \cup K_{1,8}$ is shown in Figure 3.

Figure 3. Skolem difference mean labeling of $\boldsymbol{K}_{1,7} \cup \boldsymbol{K}_{1,8}$
Theorem 2.7 The graph $K_{1,3} * K_{1, n}$ is a Skolem difference mean graph for all $n \geq 2$.
Proof: Let $G=K_{1,3} * K_{1, n}$ with $V(G)=\left\{x, u, v, w, u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and
$E(G)=\left\{x u, x v, x w, u u_{i}, v v_{i}, w w_{i}: 1 \leq i \leq n\right\}$. Hence $|V(G)|=3 n+4$ and $|E(G)|=3 n+$ 3

Define $f: V(G) \rightarrow\{1,2,3, \ldots \ldots \ldots \ldots \ldots, 6 n+7\}$ by

$$
\begin{array}{ll}
f(u)=1 & \\
f(v)=3 & \\
f(w)=2 n+5 & \\
f(x)=4 n+7 & \\
f\left(u_{i}\right)=6 n+9-2 i & 1 \leq i \leq n \\
f\left(v_{i}\right)=4 n+7-2 i & 1 \leq i \leq n \\
f\left(w_{i}\right)=2 n+5-2 i & 1 \leq i \leq n .
\end{array}
$$

We define following edge function $f^{*}: E(G) \rightarrow\{1,2,3, \ldots \ldots \ldots \ldots \ldots, 3 n+3\}$ by

$$
\begin{array}{lc}
f^{*}\left(u u_{i}\right)=3 n-i+4 & 1 \leq i \leq n \\
f^{*}\left(v v_{i}\right)=2 n-i+2 & 1 \leq i \leq n \\
f^{*}\left(w w_{i}\right)=i & 1 \leq i \leq n \\
f^{*}(u x)=2 n+3 & \\
f^{*}(x v)=2 n+2 & \\
f^{*}(x w)=n+1 &
\end{array}
$$

Thus the induced edge labels are distinct from $1,2,3, \ldots \ldots \ldots \ldots, 3 n+3$.
Hence the graph $K_{1,3} * K_{1, n}$ is a Skolem difference mean graph.
Example-2.8: A Skolem difference mean labeling of $K_{1,3} * K_{1,5}$ is shown in Figure-4.

Figure 4. Skolem difference mean labeling of $\boldsymbol{K}_{1,3} * \boldsymbol{K}_{1,5}$

3. Conclusion

In this paper we prove that the graphs $B_{n, d}, P_{n} \odot K_{1}, K_{1,3} * K_{1, n}, K_{1, m} \cup K_{1, n}$ admits Skolem difference mean labeling.

References

[1] D.Parmar, J. Joshi, "HK Cordial Labeling of Triangular Snake Graph", Journal of Applied Science and Computations. Vol VI, no III, (2019), pp 2118-2123.
[2] J A Gallian , "A dynamic survey of graph labeling" , The electronic Journal of Combinatories.,17(2017) \#DS6
[3] J.Gross and J.Yellen, "Graph theory and its application", CRC Press,(1999).
[4] K.Murugan and A Subramanian, "Skolem difference mean labeling of H-graphs", International Journal of Mathematics and soft computing, Vol.1,no.1, (2011), pp.115-129.
[5] N.Parmar, D. Parmar, "Product Cordial Labelling in Context of some Graph Operations on Cycle", Mathematics Today, Vol 34(A), (2018), pp. 218-227.
[6] P.Shah, D.Parmar, "Integer Cordial Labeling of Triangular Snake Graph", International Journal of Scientific Research and Reviews Vol.8, no. 1, (2019), pp 3118-3126.
[7] V. Balaji, D.S.T.Ramesh , A Subramanian, "Skolem Mean labeling", Bulletin of Pure and Applied science, Vol.26E, no. 2 , (2007), pp 245-248.

