Skolem Difference Mean Labeling of Some Path Related Graphs

Dharamvirsinh Parmar*1, Urvisha Vaghela²

¹Assistant Professor at Department of Mathematics, C.U.Shah University, Wadhwan, India ²Research Scholar, C.U. Shah University, Wadhwan, India

Abstract

A graph G = (V(G), E(G)) with p vertices and q edges is called Skolem difference mean labeling graph if $f: V \to \{1, 2, 3, \ldots, p + q\}$ is an injective mapping such that induced bijective edge labeling $f^*: E \to \{1, 2, 3, \ldots, q\}$ defined by $f^*(e = uv) = \frac{|f(u) - f(v)|}{2}$, if |f(u) - f(v)| is even otherwise $\frac{|f(u) - f(v)| + 1}{2}$, if |f(u) - f(v)| is odd.. In this paper we discuss Skolem difference mean labeling of Broom graph, Comb graph, Two star graph and $K_{1,3} * K_{1,n}$ graph.

Keywords: Skolem difference mean labeling, Broom graph, Comb graph, Two star graph, $K_{1,3} * K_{1,n}$ graph.

1. Introduction

We consider finite, connected and undirected graph. We consider graph *G* having set of vertices V(G) and set of edges E(G). A graph labeling of a graph is a map that carries the graph elements to the set of numbers, subject to certain conditions. For detailed survey on graph labeling we refer to a dynamic survey on graph labeling by Gallian [2].

The concept of Skolem mean labeling was introduced by V. Balaji, D.S.T. Ramesh and A. Subramanian in [7]. Motivated by these definition Skolem difference mean labeling was introduced by K. Murugan and A. Subramanian in [4]. For the standard notation, we refer Gross and Yellen [3].

Definition 1.1 A graph G = (V(G), E(G)) with p vertices and q edges is called Skolem difference mean labeling graph if $f: V \to \{1, 2, 3, \ldots, p + q\}$ is an injective mapping such that induced bijective edge labeling $f^*: E \to \{1, 2, 3, \ldots, q\}$ defined by $f^*(e = uv) = \frac{|f(u) - f(v)|}{2}$, if |f(u) - f(v)| is even otherwise $\frac{|f(u) - f(v)| + 1}{2}$, if |f(u) - f(v)| is odd. A graph that admits Skolem difference mean labeling is called Skolem difference mean graph Definition 1.2 A Broom graph is graph of *n* vertices and have a path *P* with *d* vertices and n - d pendant vertices all of these being adjacent to either the origin *u* or the terminus *v* of path *P*. It is denoted by $B_{n,d}$.

Definition 1.3 The Comb is the graph obtained from a path P_n by attaching a pendant vertex to each vertex of the path. It is denoted by $P_n \odot K_1$.

Definition 1.4 The two star is the disjoint union of $K_{1,m} \& K_{1,n}$. It is denoted by $K_{1,m} \bigcup K_{1,n}$.

Definition 1.5 $K_{1,3} * K_{1,n}$ is the graph obtained from $K_{1,3}$ by attaching root of a star $K_{1,n}$ at each pendant vertex of $K_{1,3}$.

2. Main Result

Theorem 2.1 The Broom graph $B_{n,d}$ is a Skolem difference mean graph for all values of $n \ge 4, d \ge 2$.

Proof: Let $G = B_{n,d}$ with $V(G) = \{u_1, u_2, \dots, u_d, u_{d+1}, \dots, u_n\}$ and $E(G) = \{(u_i \ u_{i+1}): 1 \le i \le d-1\} \cup \{(u_d \ u_{d+i}): 1 \le i \le n-d\}.$ Hence |V(G)| = n & |E(G)| = n-1.

Define a function $f: V(G) \rightarrow \{1, 2, 3, \dots, \dots, 2n - 1\}$ as follows.

Case:1 When *d* is even.

$f(u_{2i-1}) = d + 2i - 1$	$1 \le i \le \frac{d}{2}$
$f(u_{2i}) = d - 2i + 1$	$1 \le i \le \frac{d}{2}$
$f(u_i) = 2i - 1$	$d+1 \leq i \leq n.$

Case:2 When *d* is odd.

$f(u_{2i-1}) = d - 2i + 2$	$1 \le i \le \frac{d+1}{2}$
$f(u_{2i}) = d + 2i$	$1 \le i \le \frac{d-1}{2}$
$f(u_i) = 2i - 1$	$d+1 \le i \le n.$

In both case we define following edge function

$$f^*: E(G) \to \{1, 2, 3 \dots, n-1\} \text{ by } f^*(u_i u_{i+1}) = i \qquad 1 \le i \le d-1$$
$$f^*(u_d, u_{i+1}) = i \qquad d \le i \le n$$

Which is bijective function. Hence Broom graph is a Skolem difference mean graph.

Example-2.2: A Skolem difference mean labeling of $B_{15,10}$ is shown in Figure 1.

Theorem 2.3 The Comb $P_n \odot K_1$ graph is a Skolem difference mean graph for all $n \ge 2$. Proof: Let $G = P_n \odot K_1$ with $V(G) = \{u_i, v_i : 1 \le i \le n\}$ and $E(G) = \{(u_i u_{i+1}): 1 \le i \le n-1\} \cup \{(u_i v_i): 1 \le i \le n\}.$ $\therefore |V(G)| = 2n \& |E(G)| = 2n - 1.$ Define $f: V(G) \rightarrow \{1, 2, 3, \dots, \dots, 4n - 1\}$ as follows.

Case-1 If n is odd

$f(u_{2i-1}) = 4n - 2i$	$1 \le i \le \frac{n+1}{2}$
$f(u_{2i}) = 2i - 1$	$1 \le i \le \frac{n-1}{2}$
$f(v_{2i-1}) = 4n + 3 - 6i$	$1 \le i \le \frac{n+1}{2}$
$f(v_{2i}) = 6i - 2$	$1 \le i \le \frac{n-1}{2}$

Case -2 If *n* is even

$f(u_{2i-1}) = 4n - 2i$	$1 \le i \le \frac{n}{2}$
$f(u_{2i}) = 2i - 1$	$1 \le i \le \frac{n}{2}$
$f(v_{2i-1}) = 4n + 3 - 6i$	$1 \le i \le \frac{n}{2}$
$f(v_{2i}) = 6i - 2$	$1 \le i \le \frac{n}{2}$

In both case we define following edge function

$$f^*: E(G) \to \{1, 2, 3 \dots, 2n-1\} \text{ by } f^*(u_i u_{i+1}) = 2n - i \qquad 1 \le i \le n-1$$
$$f^*(u_i v_i) = i \qquad 1 \le i \le n$$

Which is bijective function. Hence Comb $P_n \odot K_1$ graph is a Skolem difference mean graph. Example-2.4: A Skolem difference mean labeling of $P_8 \odot K_1$ is shown in Figure 2.

Figure 2. Skolem difference mean labeling of $P_8 \odot K_1$

Theorem 2.5 The two star $K_{1,m} \cup K_{1,n}$ is a Skolem difference mean graph for all values of $m, n \ge 2$.

Proof: Let $G = K_{1,m} \cup K_{1,n}$

Case 1: n = m.

We have $V(G) = \{u, v\} \cup \{u_{i,i}, v_i/1 \le i \le m\}.$

Hence |V(G)| = 2m + 2 and |E(G)| = 2m.

The required vertex labeling $f: V(G) \rightarrow \{1, 2, 3, \dots, 4m + 2\}$ is defined as follows:

$$\begin{split} f(u) &= 1 \\ f(v) &= 3 \\ f(u_i) &= 2i & , 1 \leq i \leq m \\ f(v_i) &= 2m + 2i + 2 , \ 1 \leq i \leq m. \end{split}$$

We define following edge function

 $f^*: E(G) \rightarrow \{1, 2, 3, \dots, \dots, m, 2m\}$ by $f^*(uu_i) = i \qquad 1 \le i \le m$ $f^*(vv_i) = m + i \qquad 1 \le i \le m$

Thus induced edge labels are distinct from $1, 2, 3, \dots, 2m$.

Case 2: n < m or m < n.

We have $V(G) = \{u, v\} \cup \{u_{i,i}, v_j / 1 \le i \le m, 1 \le j \le n\}.$

$$\begin{split} |V(G)| &= m + n + 2 \\ |E(G)| &= m + n. \\ f:V(G) \to \{1,2,3 \dots \dots \dots , 2 \ m + 2n + 2\} \text{ is defined as follows:} \\ f(u) &= 1 \\ f(v) &= 3 \\ f(u_i) &= 2i \qquad , 1 \le i \le m \\ f(v_j) &= 2m + 2j + 2, \ 1 \le j \le n. \end{split}$$

We define following edge function

 $f^*: E(G) \to \{1, 2, 3, \dots, \dots, m, m+n\}$ by $f^*(uu_i) = i \qquad 1 \le i \le m$ $f^*(vv_j) = m+j \qquad 1 \le j \le n$

Thus the induced edge labels are distinct from 1,2,3, m + n.

Hence, the Star graph is a Skolem difference mean graph.

Example-2.6: A Skolem difference mean labeling of $K_{1,7} \cup K_{1,8}$ is shown in Figure 3.

Figure 3. Skolem difference mean labeling of $K_{1,7} \cup K_{1,8}$

Theorem 2.7 The graph $K_{1,3} * K_{1,n}$ is a Skolem difference mean graph for all $n \ge 2$. Proof: Let $G = K_{1,3} * K_{1,n}$ with $V(G) = \{x, u, v, w, u_i, v_i, w_i : 1 \le i \le n\}$ and $E(G) = \{xu, xv, xw, uu_i, vv_i, ww_i : 1 \le i \le n\}$. Hence |V(G)| = 3n + 4 and |E(G)| = 3n + 3Define $f: V(G) \rightarrow \{1, 2, 3, \dots, \dots, 6n + 7\}$ by

$$f(u) = 1$$

$$f(v) = 3$$

$$f(w) = 2n + 5$$

$$f(x) = 4n + 7$$

$$f(u_i) = 6n + 9 - 2i \qquad 1 \le i \le n$$

$$f(v_i) = 4n + 7 - 2i \qquad 1 \le i \le n$$

$$f(w_i) = 2n + 5 - 2i \qquad 1 \le i \le n.$$

We define following edge function $f^*: E(G) \to \{1, 2, 3, \dots, \dots, 3n + 3\}$ by

$$f^{*}(uu_{i}) = 3n - i + 4 \qquad 1 \le i \le n$$

$$f^{*}(vv_{i}) = 2n - i + 2 \qquad 1 \le i \le n$$

$$f^{*}(ww_{i}) = i \qquad 1 \le i \le n$$

$$f^{*}(ux) = 2n + 3$$

$$f^{*}(xv) = 2n + 2$$

$$f^{*}(xw) = n + 1$$

Thus the induced edge labels are distinct from $1,2,3, \dots, 3n + 3$.

Hence the graph $K_{1,3} * K_{1,n}$ is a Skolem difference mean graph.

Example-2.8: A Skolem difference mean labeling of $K_{1,3} * K_{1,5}$ is shown in Figure-4.

Figure 4. Skolem difference mean labeling of $K_{1,3} * K_{1,5}$

3. Conclusion

In this paper we prove that the graphs $B_{n,d}$, $P_n \odot K_1$, $K_{1,3} * K_{1,n}$, $K_{1,m} \cup K_{1,n}$ admits Skolem difference mean labeling.

References

[1] D.Parmar, J. Joshi, " H_K - Cordial Labeling of Triangular Snake Graph", Journal of Applied Science and Computations. Vol VI, no III, (2019), pp 2118 – 2123.

[2] J A Gallian , "A dynamic survey of graph labeling" , The electronic Journal of Combinatories., 17(2017) #DS6

[3] J.Gross and J.Yellen, "Graph theory and its application", CRC Press, (1999).

[4] K.Murugan and A Subramanian, "Skolem difference mean labeling of H-graphs", International Journal of Mathematics and soft computing, Vol.1, no.1, (2011), pp.115-129.

[5] N.Parmar, D. Parmar, "Product Cordial Labelling in Context of some Graph Operations on Cycle", Mathematics Today, Vol 34(A), (2018), pp. 218-227.

[6] P.Shah, D.Parmar, "Integer Cordial Labeling of Triangular Snake Graph", International Journal of Scientific Research and Reviews Vol.8, no. 1, (2019), pp 3118-3126.

[7] V. Balaji , D.S.T.Ramesh , A Subramanian , "Skolem Mean labeling", Bulletin of Pure and Applied science, Vol.26E, no. 2 , (2007), pp 245-248.