

ABSTRACT: Two digit-level finite field

multipliers in F2m utilizing redundant

representation are presented. Embedding

F2m in cyclotomic field F(n)2 causes a

certain amount of redundancy and

consequently performing field

multiplication using redundant

representation would require more

hardware resources. Based on a specific

feature of redundant representation in a

class of finite fields, two modern

multiplication algorithms along with their

pertaining architectures are proposed to

alleviate this problem. Considering area-

delay product as a measure of evaluation,

it has been shown that both the proposed

architectures considerably outperform

existing digit-level multipliers utilizing the

same basis. It is also shown that for a

subset of the fields, the proposed

multipliers are of higher performance in

terms of area-delay complexities among

several recently proposed optimal normal

basis multipliers. The main characteristics

of the post place & route application

specific integrated circuit implementation

of the pro- posed multipliers for three

practical digit sizes are also reported.

Index Terms: Digit-level architecture,

finite field arithmetic, multiplication

algorithm, redundant representation

I.INTRODUCTION

Finite field computation has gained

growing attention because of its wide

range of applications in coding theory,

error control coding, and especially in

cryptography, where ElGamal and elliptic

curve cryptography (ECC) two out of the

three well-known cryptosystems, are

depends on finite field arithmetic. Finite

field computation is performed by utilizing

arithmetic operations in the underlying

finite field. Among the basic field

operations, multiplication plays a

fundamental role as more complicated

operations, namely, field exponentiation

and field inversion can be carried out with

consecutive use of field multiplication.

Similar to linear algebra, the concept of

representation bases is also used in finite

field arithmetic to represent field elements.

The choice of representation system

mainly affected by the hardware in use and

the requirements of the cryptosystem, has

a great impact on computational

performance.

A few number of representation systems

for extension binary fields have been

proposed in the literature, such as

polynomial basis normal basis (NB),

redundant basis (RB), and dual basis. In

both normal basis (NB) and redundant

representation (RB), squaring operation

can be performed by applying a simple

permutation operation on the coordinates.

Moreover, redundant representation is of a

special interest because of its unique

feature in accommodating ring type

operations. This not only offers almost

cost-free squaring operation but also

eliminates the need for modular reduction

in multiplication.
II.EXISTED SYSTEM

Fig. 1 shows the architecture, hereafter

referred to as digit-level symmetrical

Redundant Basis RB type−a multiplier.

From top to bottom, the architecture

contains an n-bit circular shift register

Design Of An Area Efficient Parallel-In Parallel-Out

Multiplier Using Redundant Representation
1 G. MADHUSUDHANA RAO, 2 P. JAYA BABU, 3T. PRAVALLIKA, 4KATURI NISSI

1H.O.D & Associate Professor, 2Assistant Professor, 3Assistant Professor, 4M.Tech Scholar

 Dept. Of E.C.E,

 N.V.R College of Engineering & Technology, Tenali, A.P

Pramana Research Journal

Volume 8, Issue 11, 2018

ISSN NO: 2249-2976

https://pramanaresearch.org/366

which should be initialized with the

coordinates of operand B. This shift

register provides inputs to a wire

expansion module with n inputs and w(n −

1) outputs followed by ((n − 1)/2) identical

modules shown inside the dashed boxes.

FIG. 1 EXISTED SYSTEM

At the bottom, there is a network of XOR

gates adding 2w outputs of each module

together to form output coordinates. Each

module is made of a layer of 2w AND

gates receiving the outputs of the wire

expansion module as their first input set.

The second input set is received from

certain bits of operand A in a digit-serial

fashion. Each AND gate is followed by an

XOR gate connected immediately to a flip-

flop.

The output of the flip-flop is fed back to

the XOR gate forming an accumulation

unit together. Two AND gates along with

their respective accumulation units form a

structure responsible to realize the

operations. One of these structures is

shown in the Fig. 1 inside a dotted block

for j = 0 and k = 0. In total, the architecture

contains w(n − 1/2) such structures, each

of which consists of two AND gates, two

XOR gates, and two flip-flops to generate

and store each clock cycle.

III. PROPOSED SYSTEM

A proposed multiplier is a combinational

logic circuit used in digital systems to

perform the multiplication of two binary

numbers. These are most commonly

utilized in various applications especially

in the field of digital signal processing to

perform the various algorithms.

Commercial applications such as

computers, mobiles, high speed calculators

and some general purpose processors

require binary multipliers. Compared with

addition subtraction, and multiplication

multiplication is a complex process.

FIG. 2 PROPOSED SYSTEM

In multiplication process, the number

which is to be multiplied by the other

number is known as multiplicand and the

number multiplied is known as multiplier.

Similar to the multiplication of decimal

numbers, multiplication which is proposed

follows the same process for producing a

product result of the two binary numbers.

The binary multiplication is much easier as

it consists of only 0s and 1s.

The multiplication of two binary numbers

can be performed by utilizing two common

methods, namely partial product addition

and shifting, and utilizing parallel

multipliers. Before discussing about the

types, let us look at the unsigned binary

numbers multiplication process. In the

above multiplication, partial products are

generated for each digit in the multiplier.

Then all these partial products are summed

to produce the final product value. In the

partial product multiplication, when the

multiplier bit zero, the partial product is

zero, and when the multiplier bit is 1, the

resulted partial product is the multiplicand.

Pramana Research Journal

Volume 8, Issue 11, 2018

ISSN NO: 2249-2976

https://pramanaresearch.org/367

As similar to the decimal numbers, each

successive partial product is shifted one

position left relative to the preceding

partial product before summing all partial

products. Therefore, this multiplication

utilizes n-shifts and adds to multiply n-bit

binary number. The combinational circuit

implemented for performing such

multiplication is known as an array

multiplier or combinational multiplier. A

multiplier essentially contains two

operands, a multiplicand ‘Y’ and a

multiplier ‘X’, and generates a product ‘P’.

In a conventional multiplier, a number of

partial products are formed initially by

multiplying the multiplicand with each bit

of the multiplier. These partial products

are then added together for generating the

product ‘P’. In short, we can break down

multiplication into two parts, namely

partial product generation and partial

product accumulation.

Hardware multipliers, based directly on

adder architectures, have become

indispensable in modern computers.

Multiplier circuits are modelled after the

“shift and add” algorithm as shown below.

In this algorithm, one partial product is

created for each bit in the multiplier—the

first partial product is created by the LSB

of the multiplier, the second partial

product is created by the second bit in the

multiplier, etc. Partial products are a copy

of the multiplicand if the corresponding

multiplier bit is a '1', and all 0's if the

corresponding multiplier bit is '0'.

Each successive partial product is shifted

one bit position to the left. This specific

multiplication example is recast in a

generalized example on the left below.

Each input, partial product digit, and result

have been given a logical name, and these

same names are used as signal names in

the circuit schematics. By comparing the

signal names in the multiplication example

with the schematics, the behavior of the

multiply circuit can be confirmed.

Each bit in the multiplier is AND'ed with

each bit in the multiplicand to form the

corresponding partial product bits. The

partial product bits are fed to an array of

full adders (and half adders where

appropriate), with the adders shifted to the

left as indicated by the multiplication

example. The final partial products are

added with a CLA circuit. Note that some

full-adder circuits bring signal values into

the carry-in inputs (instead of carries from

the neighbouring stage). This is a valid use

of the full-adder circuit; the full adder

simply adds any three bits applied to its

inputs. You are encouraged to work

through a few examples on your own to

confirm the adder array and CLA work

together to properly sum the partial

products. By utilizing Razor flip-flops

timing violations occur before the next

input pattern arrives can be detected.

FIG.3: RAZOR FLIP-FLOPS

A 1-bit Razor flip-flop consists of a main

flip-flop, shadow latch, XOR gate, and

mux. The shadow latch catches the

execution result using a delayed clock

signal, which is slower than the normal

clock signal and the main flip-flop catches

the execution result for the combination

circuit using a normal clock signal.

The path delay of the current operation

exceeds the cycle period, and the main

flip-flop catches an incorrect result if the

latched bit of the shadow latch is different

from that of the main flip-flop. To notify

the system the Razor flip-flop will set the

error signal to 1 to re execute the operation

if any errors occur and notify the circuit

that an error has occurred. To detect

whether an operation is considered to be a

Pramana Research Journal

Volume 8, Issue 11, 2018

ISSN NO: 2249-2976

https://pramanaresearch.org/368

one-cycle pattern can really finish in a

cycle we utilize Razor flip-flops. If not, the

operation is reexecuted with two cycles.

Although the reexecution may seem costly,

because of the reexecution frequency is

low then overall cost is low.

IV. RESULTS

FIG 4. RTL SCHEMATIC

FIG 5. TECHNOLOGY SCHEMATIC

FIG 6. OUTPUT

FIG 7. REPORT

V. CONCLUSION

Two new digit-level PIPO finite field

multipliers using redundant representation

have been proposed. The new architecture

stage layout minimizes the switching

activities and reduces the electricity

consumption of a Parallel in parallel out

multiplier. The good judgment gate

substitution technique has additionally

utilized in digit-serial PB multiplier.

Hence, the area complexity of the finite

subject multiplier has been reduced. The

proposed low-strength digit multiplier is

appropriate for imposing low-electricity

EC crypto systems in embedded structures

with limited power resources. The

proposed low-strength digit multiplier can

be used as IP middle for instant

implementation of EC cryptosystems. At

last it produce effective results compared

to existed system.
VI. IREFERENCES

[1] T. ElGamal, “A public key

cryptosystem and a signature scheme

based on discrete logarithms,” IEEE

Trans. Inf. Theory, vol. 31, no. 4, pp. 469–

472, Sep. 2006.

[2] I. F. Blake, G. Seroussi, and N. P.

Smart, Elliptic Curves in Cryptography

(London Mathematical Society Lecture

Note Series). Cambridge, U.K.:

Cambridge Univ. Press, 1999.

[3] A. J. Memezes, P. C. Van Oorschot,

and S. A. Vanstone, Handbook of Applied

Cryptography (Discrete Mathematics and

Its Applications). Boca Raton, FL, USA:

CRC Press, 1996.

Pramana Research Journal

Volume 8, Issue 11, 2018

ISSN NO: 2249-2976

https://pramanaresearch.org/369

[4] T. Itoh and S. Tsujii, “A fast algorithm

for computing multiplicative inverses in G

F(2m) using normal basis,” Inf. Comput.,

vol. 78, no. 3, pp. 171–177, 1988.

[5] C. Rebeiro, S. Roy, D. Reddy, and D.

Mukhopadhyay, “Revisiting the Itoh–

Tsujii inversion algorithm for FPGA

platforms,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 19, no. 8, pp.

1508–1512, Aug. 2011.

[6] E. D. Mastrovito, “VLSI architectures

for computations in Galois fields,” Ph.D.

dissertation, Dept. Electr. Eng., Linköping

Univ., Linköping, Sweden, 1991.

[7] J. Omura and J. Massey,

“Computational method and apparatus for

finite field arithmetic,” U.S. Patent 4 587

627, May 6, 1986.

[8] H. Wu, M. A. Hasan, I. F. Blake, and

S. Gao, “Finite field multiplier using

redundant representation,” IEEE Trans.

Comput., vol. 51, no. 11, pp. 1306–1316,

Nov. 2002.

[9] D. Jungnickel, A. J. Menezes, and S. A.

Vanstone, “On the number of self-dual

bases of G F(qm) over G F(q),” Proc.

Amer. Math. Soc., vol. 109, no. 1, pp. 23–

29, 1990.

[10] S. Gao, J. von zur Gathen, D.

Panario, and V. Shoup, “Algorithms for

exponentiation in finite fields,” J.

Symbolic Comput., vol. 29, no. 6, pp. 879–

889, 2000.

[11] S. Gao, J. von zur Gathen, and D.

Panario, “Gauss periods and fast

exponentiation in finite fields,” in LATIN

Theoretical Informatics (Lecture Notes in

Computer Science), vol. 911. Berlin,

Germany: Springer, 1995, pp. 311–322.

[12] A. H. Namin, H. Wu, and M. Ahmadi,

“Comb architectures for finite field

multiplication in (Fm2),” IEEE Trans.

Comput., vol. 56, no. 7, pp. 909–916, Jul.

2007.

[13] A. H. Namin, H. Wu, and M. Ahmadi,

“A new finite-field multiplier using

redundant representation,” IEEE Trans.

Comput., vol. 57, no. 5, pp. 716–720, May

2008.

[14] A. H. Namin, H. Wu, and M. Ahmadi,

“An efficient finite field multiplier using

redundant representation,” ACM Trans.

Embedded Comput. Syst., vol. 11, no. 2,

Jul. 2012, Art. no. 31.

[15] J. Xie, P. Meher, and Z.-H. Mao,

“High-throughput finite field multipliers

using redundant basis for FPGA and ASIC

implementations,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 62, no. 1, pp.

110–119, Jan. 2015.

[16] R. Lidl and H. Niederreiter,

Introduction to Finite Fields and Their

Applications, 2nd ed. New York, NY, USA:

Cambridge Univ. Press, 1997.

[17] D. W. Ash, I. F. Blake, and S. A.

Vanstone, “Low complexity normal

bases,” Discrete Appl. Math., vol. 25, no.

3, pp. 191–210, 1989.

[18] H. Wu, M. Hasan, and I. Blake,

“Highly regular architectures for finite

field computation using redundant basis,”

in Cryptographic Hard- ware and

Embedded Systems (Lecture Notes in

Computer Science), vol. 1717, C. K. Koç

and C. Paar, Eds. Berlin, Germany:

Springer, 1999, pp. 269–279.

[19] C. F. Kerry and P. D. Gallagher,

“Digital signature standard DSS,” U.S.

Dept. Commerce, Nat. Inst. Standards

Technol. Tech. Rep. FIPS 186-4, Jul.

2013.

 [20] R. Azarderakhsh and A. Reyhani-

Masoleh, “Low-complexity multiplier

architectures for single and hybrid-double

multiplications in Gaussian normal

bases,” IEEE Trans. Comput., vol. 62, no.

4, pp. 744–757, Apr. 2013.

Pramana Research Journal

Volume 8, Issue 11, 2018

ISSN NO: 2249-2976

https://pramanaresearch.org/370

