
 

 

 

 

 

 

 

 

ABSTRACT: Two digit-level finite field 

multipliers in F2m utilizing redundant 

representation are presented. Embedding 

F2m in cyclotomic field F(n)2 causes a 

certain amount of redundancy and 

consequently performing field 

multiplication using redundant 

representation would require more 

hardware resources. Based on a specific 

feature of redundant representation in a 

class of finite fields, two modern 

multiplication algorithms along with their 

pertaining architectures are proposed to 

alleviate this problem. Considering area-

delay product as a measure of evaluation, 

it has been shown that both the proposed 

architectures considerably outperform 

existing digit-level multipliers utilizing the 

same basis. It is also shown that for a 

subset of the fields, the proposed 

multipliers are of higher performance in 

terms of area-delay complexities among 

several recently proposed optimal normal 

basis multipliers. The main characteristics 

of the post place & route application 

specific integrated circuit implementation 

of the pro- posed multipliers for three 

practical digit sizes are also reported. 

 

Index Terms: Digit-level architecture, 

finite field arithmetic, multiplication 

algorithm, redundant representation 

I.INTRODUCTION 

Finite field computation has gained 

growing attention because of its wide 

range of applications in coding theory, 

error control coding, and especially in 

cryptography, where ElGamal and elliptic 

curve cryptography (ECC) two out of the 

three well-known cryptosystems, are 

depends on finite field arithmetic. Finite 

field computation is performed by utilizing 

arithmetic operations in the underlying 

finite field. Among the basic field 

operations, multiplication plays a 

fundamental role as more complicated 

operations, namely, field exponentiation 

and field inversion can be carried out with 

consecutive use of field multiplication. 

 

Similar to linear algebra, the concept of 

representation bases is also used in finite 

field arithmetic to represent field elements. 

The choice of representation system 

mainly affected by the hardware in use and 

the requirements of the cryptosystem, has 

a great impact on computational 

performance. 

 

A few number of representation systems 

for extension binary fields have been 

proposed in the literature, such as 

polynomial basis normal basis (NB), 

redundant basis (RB), and dual basis. In 

both normal basis (NB) and redundant 

representation (RB), squaring operation 

can be performed by applying a simple 

permutation operation on the coordinates. 

Moreover, redundant representation is of a 

special interest because of its unique 

feature in accommodating ring type 

operations. This not only offers almost 

cost-free squaring operation but also 

eliminates the need for modular reduction 

in multiplication. 
II.EXISTED SYSTEM 

Fig. 1 shows the architecture, hereafter 

referred to as digit-level symmetrical 

Redundant Basis RB type−a multiplier. 

From top to bottom, the architecture 

contains an n-bit circular shift register 
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which should be initialized with the 

coordinates of operand B. This shift 

register provides inputs to a wire 

expansion module with n inputs and w(n − 

1) outputs followed by ((n − 1)/2) identical 

modules shown inside the dashed boxes. 

 
FIG. 1 EXISTED SYSTEM 

 

At the bottom, there is a network of XOR 

gates adding 2w outputs of each module 

together to form output coordinates. Each 

module is made of a layer of 2w AND 

gates receiving the outputs of the wire 

expansion module as their first input set. 

The second input set is received from 

certain bits of operand A in a digit-serial 

fashion. Each AND gate is followed by an 

XOR gate connected immediately to a flip-

flop.  

 

The output of the flip-flop is fed back to 

the XOR gate forming an accumulation 

unit together. Two AND gates along with 

their respective accumulation units form a 

structure responsible to realize the 

operations. One of these structures is 

shown in the Fig. 1 inside a dotted block 

for j = 0 and k = 0. In total, the architecture 

contains w(n − 1/2) such structures, each 

of which consists of two AND gates, two 

XOR gates, and two flip-flops to generate 

and store  each clock cycle. 

III. PROPOSED SYSTEM 

A proposed multiplier is a combinational 

logic circuit used in digital systems to 

perform the multiplication of two binary 

numbers. These are most commonly 

utilized in various applications especially 

in the field of digital signal processing to 

perform the various algorithms. 

Commercial applications such as 

computers, mobiles, high speed calculators 

and some general purpose processors 

require binary multipliers. Compared with 

addition subtraction, and multiplication 

multiplication is a complex process.  

 

FIG. 2 PROPOSED SYSTEM 

 

In multiplication process, the number 

which is to be multiplied by the other 

number is known as multiplicand and the 

number multiplied is known as multiplier. 

Similar to the multiplication of decimal 

numbers, multiplication which is proposed 

follows the same process for producing a 

product result of the two binary numbers. 

The binary multiplication is much easier as 

it consists of only 0s and 1s.  

The multiplication of two binary numbers 

can be performed by utilizing two common 

methods, namely partial product addition 

and shifting, and utilizing parallel 

multipliers. Before discussing about the 

types, let us look at the unsigned binary 

numbers multiplication process. In the 

above multiplication, partial products are 

generated for each digit in the multiplier. 

Then all these partial products are summed 

to produce the final product value. In the 

partial product multiplication, when the 

multiplier bit zero, the partial product is 

zero, and when the multiplier bit is 1, the 

resulted partial product is the multiplicand. 
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As similar to the decimal numbers, each 

successive partial product is shifted one 

position left relative to the preceding 

partial product before summing all partial 

products. Therefore, this multiplication 

utilizes n-shifts and adds to multiply n-bit 

binary number. The combinational circuit 

implemented for performing such 

multiplication is known as an array 

multiplier or combinational multiplier. A 

multiplier essentially contains two 

operands, a multiplicand ‘Y’ and a 

multiplier ‘X’, and generates a product ‘P’. 

In a conventional multiplier, a number of 

partial products are formed initially by 

multiplying the multiplicand with each bit 

of the multiplier. These partial products 

are then added together for generating the 

product ‘P’. In short, we can break down 

multiplication into two parts, namely 

partial product generation and partial 

product accumulation.  

Hardware multipliers, based directly on 

adder architectures, have become 

indispensable in modern computers. 

Multiplier circuits are modelled after the 

“shift and add” algorithm as shown below. 

In this algorithm, one partial product is 

created for each bit in the multiplier—the 

first partial product is created by the LSB 

of the multiplier, the second partial 

product is created by the second bit in the 

multiplier, etc. Partial products are a copy 

of the multiplicand if the corresponding 

multiplier bit is a '1', and all 0's if the 

corresponding multiplier bit is '0'.  

 

Each successive partial product is shifted 

one bit position to the left. This specific 

multiplication example is recast in a 

generalized example on the left below. 

Each input, partial product digit, and result 

have been given a logical name, and these 

same names are used as signal names in 

the circuit schematics. By comparing the 

signal names in the multiplication example 

with the schematics, the behavior of the 

multiply circuit can be confirmed. 

 

Each bit in the multiplier is AND'ed with 

each bit in the multiplicand to form the 

corresponding partial product bits. The 

partial product bits are fed to an array of 

full adders (and half adders where 

appropriate), with the adders shifted to the 

left as indicated by the multiplication 

example. The final partial products are 

added with a CLA circuit. Note that some 

full-adder circuits bring signal values into 

the carry-in inputs (instead of carries from 

the neighbouring stage). This is a valid use 

of the full-adder circuit; the full adder 

simply adds any three bits applied to its 

inputs. You are encouraged to work 

through a few examples on your own to 

confirm the adder array and CLA work 

together to properly sum the partial 

products. By utilizing Razor flip-flops 

timing violations occur before the next 

input pattern arrives can be detected. 

 

 
FIG.3: RAZOR FLIP-FLOPS 

 

A 1-bit Razor flip-flop consists of a main 

flip-flop, shadow latch, XOR gate, and 

mux. The shadow latch catches the 

execution result using a delayed clock 

signal, which is slower than the normal 

clock signal and the main flip-flop catches 

the execution result for the combination 

circuit using a normal clock signal.  

 

The path delay of the current operation 

exceeds the cycle period, and the main 

flip-flop catches an incorrect result if the 

latched bit of the shadow latch is different 

from that of the main flip-flop. To notify 

the system the Razor flip-flop will set the 

error signal to 1 to re execute the operation 

if any errors occur and notify the circuit 

that an error has occurred. To detect 

whether an operation is considered to be a 
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one-cycle pattern can really finish in a 

cycle we utilize Razor flip-flops. If not, the 

operation is reexecuted with two cycles. 

Although the reexecution may seem costly, 

because of the reexecution frequency is 

low then overall cost is low. 

 

IV. RESULTS 

 

FIG 4. RTL SCHEMATIC 

 

FIG 5. TECHNOLOGY SCHEMATIC 

 

FIG 6. OUTPUT 

 

FIG 7. REPORT 

V. CONCLUSION 

Two new digit-level PIPO finite field 

multipliers using redundant representation 

have been proposed. The new architecture 

stage layout minimizes the switching 

activities and reduces the electricity 

consumption of a Parallel in parallel out 

multiplier. The good judgment gate 

substitution technique has additionally 

utilized in digit-serial PB multiplier. 

Hence, the area complexity of the finite 

subject multiplier has been reduced. The 

proposed low-strength digit multiplier is 

appropriate for imposing low-electricity 

EC crypto systems in embedded structures 

with limited power resources. The 

proposed low-strength digit multiplier can 

be used as IP middle for instant 

implementation of EC cryptosystems. At 

last it produce effective results compared 

to existed system. 
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